
Towards Building a High-Performance, Scale-In
Key-Value Storage System

Yangwook Kang, Rekha Pitchumani, Pratik Mishra, Yang-suk Kee, Francisco
Londono, Sangyoon Oh, Jongyeol Lee, and Daniel D. G. Lee

Samsung Electronics

1

0

2

4

6

fio Rocksdb Aerospike

CP
U

 C
O

RE
S

Challenges in Leveraging Fast SSDs

 Increasing IO bandwidth of SSDs requires more host system resources
 At least, one dedicated IO core is needed to saturate one NVMe SSD without any interference

 There are already many compute and IO intensive tasks in enterprise storage systems
 Indexing, journaling, compressions, deduplications ..

 Fast PCI-e based SSDs are making the situation worse

We observed that:

of cores used to saturate one NVMe SSD

2

Challenges in Leveraging Fast SSDs

 Increased per-device resource demands can limit scalability or performance
 CPU and memory are limited resources

 Only a small number of devices in a node can be supported at their full performance

 Offloading resource-intensive tasks can be helpful
 Compute and storage nodes (offload IO tasks to remote storage nodes)

 Local compute-enabled devices (GPU, Smart NIC …)

Compute
Nodes

Storage Nodes

Separate CPUs for IOs
Network congestion
Lots of data transfer Compute-enabled

Devices

CPU

PCIeRDMA, TCP, ..
Local data processing
Efficient data movement

3

What can be offloaded from Host CPUs?

 Many resource-intensive tasks are running in storage systems
 e.g. networking, checksum, compression, erasure coding, indexing ..

 Key-Value Stores
 Widely used as an internal data store in scale-out storage systems
 Data can be independently moved to other nodes or devices

 Complex storage stack that requires lots of host CPU and memory

 indexing, logging and data reorganization

 Improving its efficiency can benefit the systems running on top of it

Conventional Key-Value Stores

4

Existing Approaches In Conventional Key-Value Stores

 Offloading tasks to background processes
 Foreground logging:

to accept the requests at the speed of devices

 Background organization:
re-organize the written data

 Bypassing kernel layers
 Directly access block device through

user-level or kernel-level drivers

5

Performance Impact of I/O Stacks

 Use of Direct IO (Aerospike)
 Bypass page cache & kernel file system
 Did not find much difference in performance

compared to RocksDB

 RocksDB-SPDK
 Provides 2x better resource utilization and performance

than RocksDB
 WAL is disabled
 Without WAL, Rocksdb‘s performance can also be

improved

 Compared to Rocksdb-NOWAL, Rocksdb-SPDK provides
20% better performance
 Asynchronous I/O, Huge pages, large block sizes
 20% improvement on IO efficiency was not enough

to solve the issues with limited scalability

20%

50%

6

Resource Demands of Foreground and Background Processes
in Host Key-Value Stores

 Overheads of Foreground Processes

 Rocksdb and Aerospike require 8 flush threads
 Rocksdb requires Write-ahead Log (WAL) and fsync
 Aerospike uses a pool of synchronous I/O threads

 Rocksdb-SPDK saturates the device with 2 flush threads

sequential workloads

 Overheads of Background Processes

 The amount of overheads depends on several factors
 the number of key-value pairs, the size of values, and the type of a workload
 Many overwrites or randomly generated keys increases the overheads

 Slow background processes can make foreground processes stall or slow-down
 Overall performance degradation was around 20% - 80% compared to the sequential performance

Resource contention problem still exists

7

Offloading the Key-Value Management to Storage Devices

 Expected benefits of offloading
 Host foreground processes -> save 1-7 flush threads per device

 Host background processes -> save 2-3 background threads per device

 Among various compute resources that are available today, we chose to use SSDs
 No extra data transfers for key-value processing

 Use of existing hardware components

 SSDs are already capable of supporting fixed-length key and variable-length value requests

 Avoid metadata update overheads

 no indexing, journaling, WAL in a host system

8

Finding a boundary between Key-Value SSD and Host
for Performance and Scalability

Goals
 No dirty metadata in a host

system
 Device provides indexing:

large keys and key groups

 Saturate KV-SSD with minimal
CPU resources (one CPU core)

Conventional
Key-Value Store KAML (Jin et. al.) KVSSD

Y. Jin, H. Tseng, Y. Papakonstantinou and S. Swanson, "KAML: A Flexible, High-Performance Key-Value SSD,"
2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, TX, 2017, pp. 373-384.

9

Key-Value SSD

 Our KV-SSD prototype is implemented as SSD firmware
that runs on the existing the block NVMe SSD hardware
 Block SSDs can be switched to KVSSDs

 Main components
 Key-Value Request Handler

 Hash-based FTL

 Iterators

 Garbage Collector for key-value pairs

 KV API and driver
 API and driver for key-value SSDs are available in github

 SNIA Standard : https://www.snia.org/tech_activities/standards/curr_standards/kvsapi

KV API

KVSSD Kernel
Device Driver

KVSSD

KVSSD SPDK
Device Driver

Key-Value Applications

KV Request Handler

KV FTL

Iterator

KV Garbage Collector

Presenter
Presentation Notes
No changes to h/w – with firmware change

https://www.snia.org/tech_activities/standards/curr_standards/kvsapi

10

Supporting Variable-length Key and Key Groups in KV-SSD

 Use of Hash-based data structure
 Limit the memory per key-value pair in SSDs

 Global and Local Hash tables
 Reduce lock contention between Index Managers

 Advanced features (e.g. transactions)

 Key Groups

 First 4B of the key is used as an index of a group

 Stored to the write buffer and later flushed to an
iterator bucket identified by the prefix

Presenter
Presentation Notes

11

Evaluation

 We compare the performance and resource utilization of KVSSDs against the thee state-of-
the-art key-value stores using up to 18 NVMe devices
 Rocksdb , Rocksdb + SPDK , AeroSpike

 Key-Value Store Configuration with multiple SSDs
 Assigned multiple instances per device to saturate the bandwidth

 Key-Value Benchmark, KVSB
 Launch all instances of key-value stores at once

 NUMA-aware CPU and memory assignment (core and memory pinning when needed)

 Support sequential / uniform / zipfian distributions and YCSB A,B,C and D workloads

Device

Key-Value
Store

Key-Value
Store

…

12

Evaluation Environment

 Server: Custom-designed storage server for PCIe SSDs (Mission
Peak System)
 2 Xeon E5 2.1GHz CPUs (48 cores with hyper-threading per CPU)

 768 GB DRAM

 18 PCIe SSDs are attached to one CPU
 Samsung PM 983 PCIe SSD

 Same hardware is used for both host key-value stores and KV-SSDs

Mission Peak System*
(Support up to 18 PCIe SSDs Per CPU)

* https://www.samsung.com/semiconductor/global.semi.static/Whitepaper_Mission_Peak_Reference_Server_System_for_NGSFF_SSD_1809.pdf

13

Sequential Workloads (Small Background Overheads)

Throughput and CPU utilization Linear Scalability

High CPU Contention CPU is Saturated

Small CPU Overhead

14

Zipfian Workloads (Large Background Overheads)

Throughput and CPU utilization
Linear Scalability

High Background Overheads

CPU utilization
increases linearly

15

Read/Write Amplification

 Background operations write 5
times more data
 Write-ahead Log

 Compaction

 Read/Write amplification will
make devices busy but the
throughput will become lower

Sequential

Zipfian

16

YCSB Workloads (Mixed Reads and Writes)

 KVSSD without cache scales linearly
providing comparable performance

 YCSB-A suffers from high background
processing overheads

 Host key-value stores’ read cache
shows high memory usage

50% read – 50% write
Zipfian Distribution

95% read – 5% write
Zipfian Distribution

17

Effects of Caching

 Read cache can be easily added to KVSSD ecosystems
for better performance

 With 10GB of LRU cache per device (180 GB total),
 4 times better read performance per device

 50% lower memory footprint than other key-value
stores

 Where do the benefits come from?
 No Lock contention

 Finer-grained caching (key-value vs. page)

YCSB-C (100% reads)

18

Conclusion and Future Work
 Summary
 High resource demands of host key-value stores make it difficult to utilize fast SSDs

 The performance of KV-SSDs scales linearly while requiring significantly lower host-system resources and
outperforming conventional host-side key-value stores

 Standardization
 Key Value Storage API Specification (SNIA):

https://www.snia.org/tech_activities/standards/curr_standards/kvsapi

 Key-Value Device Commands: submitted for a review to NVMe standard committee

 KV APIs and Drivers
 Available at https://github.com/OpenMPDK/KVSSD

 Key-Value SSD will become commercially available soon

https://www.snia.org/tech_activities/standards/curr_standards/kvsapi
https://github.com/OpenMPDK/KVSSD

19

Thank you

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

