
Towards Building a High-Performance, Scale-In
Key-Value Storage System

Yangwook Kang, Rekha Pitchumani, Pratik Mishra, Yang-suk Kee, Francisco
Londono, Sangyoon Oh, Jongyeol Lee, and Daniel D. G. Lee

Samsung Electronics

1

0

2

4

6

fio Rocksdb Aerospike

CP
U

 C
O

RE
S

Challenges in Leveraging Fast SSDs

 Increasing IO bandwidth of SSDs requires more host system resources
 At least, one dedicated IO core is needed to saturate one NVMe SSD without any interference

 There are already many compute and IO intensive tasks in enterprise storage systems
 Indexing, journaling, compressions, deduplications ..

 Fast PCI-e based SSDs are making the situation worse

We observed that:

of cores used to saturate one NVMe SSD

2

Challenges in Leveraging Fast SSDs

 Increased per-device resource demands can limit scalability or performance
 CPU and memory are limited resources

 Only a small number of devices in a node can be supported at their full performance

 Offloading resource-intensive tasks can be helpful
 Compute and storage nodes (offload IO tasks to remote storage nodes)

 Local compute-enabled devices (GPU, Smart NIC …)

Compute
Nodes

Storage Nodes

Separate CPUs for IOs
Network congestion
Lots of data transfer Compute-enabled

Devices

CPU

PCIeRDMA, TCP, ..
Local data processing
Efficient data movement

3

What can be offloaded from Host CPUs?

 Many resource-intensive tasks are running in storage systems
 e.g. networking, checksum, compression, erasure coding, indexing ..

 Key-Value Stores
 Widely used as an internal data store in scale-out storage systems
 Data can be independently moved to other nodes or devices

 Complex storage stack that requires lots of host CPU and memory

 indexing, logging and data reorganization

 Improving its efficiency can benefit the systems running on top of it

Conventional Key-Value Stores

4

Existing Approaches In Conventional Key-Value Stores

 Offloading tasks to background processes
 Foreground logging:

to accept the requests at the speed of devices

 Background organization:
re-organize the written data

 Bypassing kernel layers
 Directly access block device through

user-level or kernel-level drivers

5

Performance Impact of I/O Stacks

 Use of Direct IO (Aerospike)
 Bypass page cache & kernel file system
 Did not find much difference in performance

compared to RocksDB

 RocksDB-SPDK
 Provides 2x better resource utilization and performance

than RocksDB
 WAL is disabled
 Without WAL, Rocksdb‘s performance can also be

improved

 Compared to Rocksdb-NOWAL, Rocksdb-SPDK provides
20% better performance
 Asynchronous I/O, Huge pages, large block sizes
 20% improvement on IO efficiency was not enough

to solve the issues with limited scalability

20%

50%

6

Resource Demands of Foreground and Background Processes
in Host Key-Value Stores

 Overheads of Foreground Processes

 Rocksdb and Aerospike require 8 flush threads
 Rocksdb requires Write-ahead Log (WAL) and fsync
 Aerospike uses a pool of synchronous I/O threads

 Rocksdb-SPDK saturates the device with 2 flush threads

sequential workloads

 Overheads of Background Processes

 The amount of overheads depends on several factors
 the number of key-value pairs, the size of values, and the type of a workload
 Many overwrites or randomly generated keys increases the overheads

 Slow background processes can make foreground processes stall or slow-down
 Overall performance degradation was around 20% - 80% compared to the sequential performance

Resource contention problem still exists

7

Offloading the Key-Value Management to Storage Devices

 Expected benefits of offloading
 Host foreground processes -> save 1-7 flush threads per device

 Host background processes -> save 2-3 background threads per device

 Among various compute resources that are available today, we chose to use SSDs
 No extra data transfers for key-value processing

 Use of existing hardware components

 SSDs are already capable of supporting fixed-length key and variable-length value requests

 Avoid metadata update overheads

 no indexing, journaling, WAL in a host system

8

Finding a boundary between Key-Value SSD and Host
for Performance and Scalability

Goals
 No dirty metadata in a host

system
 Device provides indexing:

large keys and key groups

 Saturate KV-SSD with minimal
CPU resources (one CPU core)

Conventional
Key-Value Store KAML (Jin et. al.) KVSSD

Y. Jin, H. Tseng, Y. Papakonstantinou and S. Swanson, "KAML: A Flexible, High-Performance Key-Value SSD,"
2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, TX, 2017, pp. 373-384.

9

Key-Value SSD

 Our KV-SSD prototype is implemented as SSD firmware
that runs on the existing the block NVMe SSD hardware
 Block SSDs can be switched to KVSSDs

 Main components
 Key-Value Request Handler

 Hash-based FTL

 Iterators

 Garbage Collector for key-value pairs

 KV API and driver
 API and driver for key-value SSDs are available in github

 SNIA Standard : https://www.snia.org/tech_activities/standards/curr_standards/kvsapi

KV API

KVSSD Kernel
Device Driver

KVSSD

KVSSD SPDK
Device Driver

Key-Value Applications

KV Request Handler

KV FTL

Iterator

KV Garbage Collector

Presenter
Presentation Notes
No changes to h/w – with firmware change

https://www.snia.org/tech_activities/standards/curr_standards/kvsapi

10

Supporting Variable-length Key and Key Groups in KV-SSD

 Use of Hash-based data structure
 Limit the memory per key-value pair in SSDs

 Global and Local Hash tables
 Reduce lock contention between Index Managers

 Advanced features (e.g. transactions)

 Key Groups

 First 4B of the key is used as an index of a group

 Stored to the write buffer and later flushed to an
iterator bucket identified by the prefix

Presenter
Presentation Notes

11

Evaluation

 We compare the performance and resource utilization of KVSSDs against the thee state-of-
the-art key-value stores using up to 18 NVMe devices
 Rocksdb , Rocksdb + SPDK , AeroSpike

 Key-Value Store Configuration with multiple SSDs
 Assigned multiple instances per device to saturate the bandwidth

 Key-Value Benchmark, KVSB
 Launch all instances of key-value stores at once

 NUMA-aware CPU and memory assignment (core and memory pinning when needed)

 Support sequential / uniform / zipfian distributions and YCSB A,B,C and D workloads

Device

Key-Value
Store

Key-Value
Store

…

12

Evaluation Environment

 Server: Custom-designed storage server for PCIe SSDs (Mission
Peak System)
 2 Xeon E5 2.1GHz CPUs (48 cores with hyper-threading per CPU)

 768 GB DRAM

 18 PCIe SSDs are attached to one CPU
 Samsung PM 983 PCIe SSD

 Same hardware is used for both host key-value stores and KV-SSDs

Mission Peak System*
(Support up to 18 PCIe SSDs Per CPU)

* https://www.samsung.com/semiconductor/global.semi.static/Whitepaper_Mission_Peak_Reference_Server_System_for_NGSFF_SSD_1809.pdf

13

Sequential Workloads (Small Background Overheads)

Throughput and CPU utilization Linear Scalability

High CPU Contention CPU is Saturated

Small CPU Overhead

14

Zipfian Workloads (Large Background Overheads)

Throughput and CPU utilization
Linear Scalability

High Background Overheads

CPU utilization
increases linearly

15

Read/Write Amplification

 Background operations write 5
times more data
 Write-ahead Log

 Compaction

 Read/Write amplification will
make devices busy but the
throughput will become lower

Sequential

Zipfian

16

YCSB Workloads (Mixed Reads and Writes)

 KVSSD without cache scales linearly
providing comparable performance

 YCSB-A suffers from high background
processing overheads

 Host key-value stores’ read cache
shows high memory usage

50% read – 50% write
Zipfian Distribution

95% read – 5% write
Zipfian Distribution

17

Effects of Caching

 Read cache can be easily added to KVSSD ecosystems
for better performance

 With 10GB of LRU cache per device (180 GB total),
 4 times better read performance per device

 50% lower memory footprint than other key-value
stores

 Where do the benefits come from?
 No Lock contention

 Finer-grained caching (key-value vs. page)

YCSB-C (100% reads)

18

Conclusion and Future Work
 Summary
 High resource demands of host key-value stores make it difficult to utilize fast SSDs

 The performance of KV-SSDs scales linearly while requiring significantly lower host-system resources and
outperforming conventional host-side key-value stores

 Standardization
 Key Value Storage API Specification (SNIA):

https://www.snia.org/tech_activities/standards/curr_standards/kvsapi

 Key-Value Device Commands: submitted for a review to NVMe standard committee

 KV APIs and Drivers
 Available at https://github.com/OpenMPDK/KVSSD

 Key-Value SSD will become commercially available soon

https://www.snia.org/tech_activities/standards/curr_standards/kvsapi
https://github.com/OpenMPDK/KVSSD

19

Thank you

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

