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Challenges in Leveraging Fast SSDs

 Increasing IO bandwidth of SSDs requires more host system resources 
 At least, one dedicated IO core is needed to saturate one NVMe SSD without any interference

 There are already many compute and IO intensive tasks in enterprise storage systems
 Indexing, journaling, compressions,  deduplications ..

 Fast PCI-e based SSDs are making the situation worse

We observed that:

# of cores used to saturate one NVMe SSD
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Challenges in Leveraging Fast SSDs

 Increased per-device resource demands can limit scalability or performance 
 CPU and memory are limited resources

 Only a small number of devices in a node can be supported at their full performance

 Offloading resource-intensive tasks can be helpful 
 Compute and storage nodes (offload IO tasks to remote storage nodes) 

 Local compute-enabled devices ( GPU, Smart NIC  …)

Compute 
Nodes

Storage Nodes

Separate CPUs for IOs
Network congestion
Lots of data transfer Compute-enabled 

Devices

CPU

PCIeRDMA, TCP, ..
Local data processing
Efficient data movement
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What can be offloaded from Host CPUs? 

 Many resource-intensive tasks are running in storage systems
 e.g. networking, checksum, compression, erasure coding, indexing ..

 Key-Value Stores
 Widely used as an internal data store in scale-out storage systems
 Data can be independently moved to other nodes or devices

 Complex storage stack that requires lots of host CPU and memory 

 indexing, logging and data reorganization

 Improving its efficiency can benefit the systems running on top of it

Conventional Key-Value Stores 
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Existing Approaches In Conventional Key-Value Stores 

 Offloading tasks to background processes
 Foreground logging: 

to accept the requests at the speed of devices

 Background organization: 
re-organize the written data 

 Bypassing kernel layers 
 Directly access block device through 

user-level or kernel-level drivers
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Performance Impact of I/O Stacks 

 Use of Direct IO (Aerospike)
 Bypass page cache & kernel file system 
 Did not find much difference in performance 

compared to RocksDB

 RocksDB-SPDK
 Provides 2x better resource utilization and performance 

than RocksDB
 WAL is disabled
 Without WAL, Rocksdb‘s performance can also be 

improved

 Compared to Rocksdb-NOWAL, Rocksdb-SPDK provides 
20% better performance 
 Asynchronous I/O, Huge pages, large block sizes
 20% improvement on IO efficiency was not enough 

to solve the issues with limited scalability

20%

50%
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Resource Demands of Foreground and Background Processes 
in Host Key-Value Stores 

 Overheads of Foreground Processes

 Rocksdb and Aerospike require 8 flush threads
 Rocksdb requires Write-ahead Log (WAL) and fsync
 Aerospike uses a pool of synchronous I/O threads 

 Rocksdb-SPDK saturates the device with 2 flush threads 

sequential workloads

 Overheads of Background Processes

 The amount of overheads depends on several factors 
 the number of key-value pairs, the size of values, and the type of a workload
 Many overwrites or randomly generated keys increases the overheads

 Slow background processes can make foreground processes stall or slow-down
 Overall performance degradation was around 20% - 80% compared to the sequential performance

Resource contention problem still exists
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Offloading the Key-Value Management to Storage Devices

 Expected benefits of offloading
 Host foreground processes  -> save 1-7  flush threads per device 

 Host background processes -> save 2-3 background threads per device

 Among various compute resources that are available today, we chose to use SSDs
 No extra data transfers for key-value processing

 Use of existing hardware components

 SSDs are already capable of supporting fixed-length key and variable-length value requests

 Avoid metadata update overheads

 no indexing, journaling, WAL in a host system



8

Finding a boundary between Key-Value SSD and Host 
for Performance and Scalability

Goals 
 No dirty metadata in a host 

system
 Device provides indexing: 

large keys and key groups

 Saturate KV-SSD with minimal 
CPU resources (one CPU core)

Conventional 
Key-Value Store                      KAML (Jin et. al.)                          KVSSD

Y. Jin, H. Tseng, Y. Papakonstantinou and S. Swanson, "KAML: A Flexible, High-Performance Key-Value SSD,"
2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, TX, 2017, pp. 373-384.
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Key-Value SSD

 Our KV-SSD prototype is implemented as SSD firmware
that runs on the existing the block NVMe SSD hardware
 Block SSDs can be switched to KVSSDs 

 Main components 
 Key-Value Request Handler 

 Hash-based FTL

 Iterators

 Garbage Collector for key-value pairs

 KV API and driver 
 API and driver for key-value SSDs are available in github

 SNIA Standard : https://www.snia.org/tech_activities/standards/curr_standards/kvsapi

KV API 

KVSSD Kernel 
Device Driver

KVSSD

KVSSD SPDK 
Device Driver

Key-Value Applications

KV Request Handler

KV FTL 

Iterator

KV Garbage Collector

Presenter
Presentation Notes
No changes to h/w – with firmware change

https://www.snia.org/tech_activities/standards/curr_standards/kvsapi
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Supporting Variable-length Key and Key Groups in KV-SSD

 Use of Hash-based data structure 
 Limit the memory per key-value pair in SSDs 

 Global and Local Hash tables 
 Reduce lock contention between Index Managers

 Advanced features (e.g. transactions)

 Key Groups

 First 4B of the key is used as an index of a group

 Stored to the write buffer and later flushed to an
iterator bucket identified by the prefix

Presenter
Presentation Notes
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Evaluation

 We compare the performance and resource utilization of KVSSDs against the thee state-of-
the-art key-value stores using up to 18 NVMe devices
 Rocksdb , Rocksdb + SPDK , AeroSpike

 Key-Value Store Configuration with multiple SSDs 
 Assigned multiple instances per device to saturate the bandwidth

 Key-Value Benchmark,  KVSB 
 Launch all instances of key-value stores at once 

 NUMA-aware CPU and memory assignment (core and memory pinning when needed)

 Support sequential / uniform / zipfian distributions and YCSB A,B,C and D workloads

Device

Key-Value
Store 

Key-Value
Store 

…
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Evaluation Environment

 Server: Custom-designed storage server for PCIe SSDs (Mission 
Peak System)
 2 Xeon E5 2.1GHz CPUs (48 cores with hyper-threading per CPU) 

 768 GB DRAM

 18 PCIe SSDs are attached to one CPU 
 Samsung PM 983 PCIe SSD

 Same hardware is used for both host key-value stores and KV-SSDs

Mission Peak System*
(Support up to 18 PCIe SSDs Per CPU)

* https://www.samsung.com/semiconductor/global.semi.static/Whitepaper_Mission_Peak_Reference_Server_System_for_NGSFF_SSD_1809.pdf
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Sequential Workloads (Small Background Overheads)

Throughput and CPU utilization Linear Scalability

High CPU Contention CPU is Saturated 

Small CPU Overhead
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Zipfian Workloads (Large Background Overheads)

Throughput and CPU utilization 
Linear Scalability

High Background Overheads

CPU utilization 
increases linearly
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Read/Write Amplification

 Background operations write 5 
times more data 
 Write-ahead Log

 Compaction

 Read/Write amplification will 
make devices busy but the 
throughput will become lower

Sequential

Zipfian
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YCSB Workloads (Mixed Reads and Writes)

 KVSSD without cache scales linearly 
providing comparable performance 

 YCSB-A suffers from high background 
processing overheads

 Host key-value stores’ read cache 
shows high memory usage 

50% read – 50% write
Zipfian Distribution 

95% read – 5% write
Zipfian Distribution 
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Effects of Caching

 Read cache can be easily added to KVSSD ecosystems  
for better performance

 With 10GB of LRU cache per device (180 GB total),
 4 times better read performance per device

 50% lower memory footprint than other key-value 
stores 

 Where do the benefits come from?
 No Lock contention 

 Finer-grained caching (key-value vs. page) 

YCSB-C (100% reads)
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Conclusion and Future Work 
 Summary 
 High resource demands of host key-value stores make it difficult to utilize fast SSDs

 The performance of KV-SSDs scales linearly while requiring significantly lower host-system resources and 
outperforming conventional host-side key-value stores

 Standardization 
 Key Value Storage API Specification (SNIA): 

https://www.snia.org/tech_activities/standards/curr_standards/kvsapi

 Key-Value Device Commands: submitted for a review to NVMe standard committee

 KV APIs and Drivers 
 Available at https://github.com/OpenMPDK/KVSSD

 Key-Value SSD will become commercially available soon 

https://www.snia.org/tech_activities/standards/curr_standards/kvsapi
https://github.com/OpenMPDK/KVSSD
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Thank you 
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